POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Biomass and fossil fuel combustion [S2EPiO1-ECiO>SP]

Course				
Field of study Industrial and Renewable Energy Systems		Year/Semester 1/1		
Area of study (specialization) Thermal and Renewable Energy		Profile of study general academi	ic	
Level of study second-cycle		Course offered in Polish	n	
Form of study full-time		Requirements compulsory		
Number of hours				
Lecture 15	Laboratory class 15	es	Other 0	
Tutorials 15	Projects/seminar 0	S		
Number of credit points 2,00				
Coordinators dr inż. Radosław Jankowski radoslaw.jankowski@put.poznan	.pl	Lecturers		

Prerequisites

Knowledge gained during the studies in: thermodynamics, basics of automation, control and automation, boiler devices, heat and mass exchange, energy management, fuel combustion, environmental protection.

Course objective

In-depth knowledge of the theory of combustion of solid, liquid and gaseous fuels, including biomass. Getting acquainted with current trends related to the combustion process from the point of view of energy and environmental protection. Gaining knowledge in the field of optimization of fuel and biomass combustion processes in the aspects of modern technologies and development of energy equipment.

Course-related learning outcomes

Knowledge:

student has extended and deep knowledge in the field of solid, liquid and gaseous fuel combustion student has expanded knowledge about the development trends of modern methods of combustion of conventional and renewable fuels (biomass) and renewable energy sources student has deep knowledge of operational parameters impact of combustion process on energy machines and functioning of energy systems Skills:

student is able to use his knowledge to find right sources and interpret founded information in order to solve both standard and non-standard engineering problems of combustion process student is able to use his knowledge and skills to adapt existing or create new methods and tools to solve typical engineering problems in the modern technologies in combustion process student is able to formulate and test hypotheses related to simple implementation problems

Social competences:

student is ready to critically assess knowledge and received information

student is ready to recognize the importance of knowledge in solving cognitive and practical problems and to seek expert opinions in case of difficulties in solving the problems of combustion process in energy

student is ready to fulfill social obligations as well as inspire and organize activities for the social environment

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows: Lecture - written exam.

Exercises - written test. Obtaining credit from a minimum of 51% of the points possible to get. There is a possibility of an oral question to raise the grade.

Laboratory classes - submission of the report from the laboratory exercise and oral answer to the questions asked

Programme content

Introduction to combustion processes. Solid fuels: division, properties, characteristics. Liquid fuels: division, properties, characteristics. Biofuels: division, properties, characteristics. Biofuels: division, properties, characteristics. Combustion chemistry, mechanisms and kinetics. Combustion temperature. Demand, oxygen, air, oxidant. Exhaust gas quantity and composition. Free flame aerodynamics and turbulent combustion models. Combustion of gaseous fuels. Combustion of liquid fuels. Combustion of solid fuels. Combustion of biomass.

Environmental aspects of combustion processes. Diagnostics of combustion processes.

Course topics

Topics in line with curriculum content

Teaching methods

Lecture - written exam Exercises - written test Laboratory classes - submission of the report from the laboratory exercise

Bibliography

Basic

1. W. Kordylewski red. – Spalanie i Paliwa, Oficyna Wydawnicza Politechniki Wrocławskiej, 2008

2. S. Wójcicki – Spalanie, WNT, 1969

3. W. Rybak – Spalanie i współspalanie biopaliw stałych, Oficyna Wydawnicza Politechniki Wrocławskiej, 2006

Additional

1. J. Nocoń, j. Poznański, S. Słupek, M. Rywotycki – Technika cieplna – przykłady z techniki spalania, Wydawnictwo AGH, 2007

2. J. Jarosiński – Techniki czystego spalania, WNT, 1996

3. W. Pudlik – Termiczna przeróbka odpadów podstawy teoretyczne, Wydawnictwo Politechniki Gdańskiej,

Breakdown of average student's workload

	Hours	ECTS
Total workload	60	2,00
Classes requiring direct contact with the teacher	45	1,50
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	15	0,50